• صفحه اصلی
  • مرور
    • شماره جاری
    • بر اساس شماره‌های نشریه
    • بر اساس نویسندگان
    • بر اساس موضوعات
    • نمایه نویسندگان
    • نمایه کلیدواژه ها
  • اطلاعات نشریه
    • درباره نشریه
    • اهداف و چشم انداز
    • اعضای هیات تحریریه
    • اعضای مشورتی هیات تحریریه
    • همکاران دفتر نشریه
    • اصول اخلاقی انتشار مقاله
    • بانک ها و نمایه نامه ها
    • پیوندهای مفید
    • پرسش‌های متداول
    • فرایند پذیرش مقالات
    • اخبار و اعلانات
  • راهنمای نویسندگان
  • ارسال مقاله
  • داوران
  • تماس با ما
 
  • ورود به سامانه ▼
    • ورود به سامانه
    • ثبت نام در سامانه
  • English
صفحه اصلی فهرست مقالات مشخصات مقاله
  • ذخیره رکوردها
  • |
  • نسخه قابل چاپ
  • |
  • توصیه به دوستان
  • |
  • ارجاع به این مقاله ارجاع به مقاله
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • اشتراک گذاری اشتراک گذاری
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
مهندسی عمران مدرس
مقالات آماده انتشار
شماره جاری
شماره‌های پیشین نشریه
دوره دوره 17 (1396)
شماره شماره 6 (1396)
شماره شماره 5 (1396)
شماره شماره 4 (1396)
شماره شماره 3 (1396)
شماره شماره 2 (1396)
شماره شماره 1 (1396)
دوره دوره 16 (1395)
دوره دوره 15 (1394)
دوره دوره 14 (1393)
دوره دوره 13 (1392)
دوره دوره 12 (1391)
دوره دوره 11 (1390)
دوره دوره 10 (1389)
دوره دوره 7 (1387)
دوره دوره 5 (1385)
امیری, حمید, آیتی, بیتا, گنجی دوست, حسین. (1396). حذف رنگزای Reactive Yellow 81 بوسیله راکتور دیسکی آبشاری تثبیت شده با نانو ذرات اکسید روی. مهندسی عمران مدرس, 17(2), 11-20.
حمید امیری; بیتا آیتی; حسین گنجی دوست. "حذف رنگزای Reactive Yellow 81 بوسیله راکتور دیسکی آبشاری تثبیت شده با نانو ذرات اکسید روی". مهندسی عمران مدرس, 17, 2, 1396, 11-20.
امیری, حمید, آیتی, بیتا, گنجی دوست, حسین. (1396). 'حذف رنگزای Reactive Yellow 81 بوسیله راکتور دیسکی آبشاری تثبیت شده با نانو ذرات اکسید روی', مهندسی عمران مدرس, 17(2), pp. 11-20.
امیری, حمید, آیتی, بیتا, گنجی دوست, حسین. حذف رنگزای Reactive Yellow 81 بوسیله راکتور دیسکی آبشاری تثبیت شده با نانو ذرات اکسید روی. مهندسی عمران مدرس, 1396; 17(2): 11-20.

حذف رنگزای Reactive Yellow 81 بوسیله راکتور دیسکی آبشاری تثبیت شده با نانو ذرات اکسید روی

مقاله 2، دوره 17، شماره 2، خرداد و تیر 1396، صفحه 11-20  XML اصل مقاله (962 K)
نوع مقاله: مقاله اصلی
نویسندگان
حمید امیری1؛ بیتا آیتی 2؛ حسین گنجی دوست1
1دانشگاه تربیت مدرس
2ص.پ. 4838-14155
چکیده
صنایع نساجی بدلیل تنوع رنگزاهای مصرفی و روش‌های تولید، پساب‌هایی با کمیت و کیفیت شیمیائی متفاوت تولید می‌کنند. بعضی از این رنگ‌ها بدلیل داشتن ساختار شیمیایی پیچیده، نیازمند روش‌های کارا و دارای راندمان تصفیه، نظیر روش‌های اکسیداسیون پیشرفته هستند. در این تحقیق به منظور افزایش کارائی فرایند فتوکاتالیستی در تصفیه پساب حاوی Reactive Yellow (RY81)، از یک راکتور دیسکی آبشاری تثبیت شده با نانوذرات اکسیدروی استفاده شد. در این راکتور به منظور غلبه بر محدودیت‌های انتقال جرم در راکتورهای با بستر تثبیتی، سطح دیسک‌ها بوسیله زبری مصنوعی پوشش داده شد، همچنین به دلیل وجود جریان آبشاری، علاوه بر ایجاد اختلاط، هوادهی فاضلاب بصورت خودبخودی انجام می‌شد. تاثیر پارامترهای غلظت اولیه رنگزا، pH، میزان کاتالیست پوشش داده شده و دبی جریان بر حذف رنگزا مورد بررسی قرار گرفت و میزان بهینه پارامترها، به ترتیب mg/L50، 8، gr/m240 و cc/s80 بدست آمد. نتایج مدلسازی سینتیکی نشان داد که مدل لانگمایر- هینشلوود با میزان k_(L-H) و K_ads، به ترتیب mg L-1 hr-1 17/7 و mg-1 L 122/0 توانایی زیادی در پیش‌بینی نرخ واکنش دارد. در انتها به منظور پیش‌بینی ثابت واکنش شبه درجه اول، رابطه رگرسیون غیرخطی پیشنهاد شد که با دقت بالایی (R2=0.95) تحت شرایط بهره‌برداری مختلف توانایی پیش‌بینی نرخ واکنش را دارد.
کلیدواژه ها
راکتور دیسکی آبشاری؛ رگرسیون غیرخطی؛ مدل لانگمایر-هینشلوود؛ زبری مصنوعی
موضوعات
محیط زیست
عنوان مقاله [English]
Reactive yellow 81 removal using photocatalytic cascade disk reactor coated by ZnO nanoparticles
نویسندگان [English]
Bita Ayati2؛
2P.O.Box 14155-4838
چکیده [English]
The use of different synthetic dyes in textile industries has increased in recent decay, resulting in the release of dye-containing industrial effluents into natural aquatic ecosystem. Since most of dyes are usually very recalcitrant to microbial degradation, therefore dye removal from effluent is a main concern in many studies. Different process was used for the treatment of dye effluent. In the last few years, studies were focused on advanced oxidation process (AOPs) methods such as UV-ZnO, UV-H2O2, UV-O3 and UV-TiO2. Photocatalytic process such as UV-ZnO is an efficient method that treats non-degradable wastewater by active radicals. The photocatalysis needs a photo-reactor that contacts reactant, products and light. In recent years, different types of photo-reactors have been used for wastewater treatment. In some reactors, nano-photocatalysts are utilized in slurry form, and the other particles are coated on bed. In Photocatalytic reactors with fixed bed, nano-photocatalysts are immobilized on bed and do not need the separation unit, but the main disadvantage of this photo-reactors is the low mass transfer rate between wastewater and nano-photocatalysts. Consequently, Different optimal photo-reactors were developed for increasing mass transfer rate. In this study, a novel photocatalytic cascade disc reactor coated with ZnO nano-photocatalysts was applied and in order to increase mass transfer rate artificial roughness were created on the surface of disks. Applying artificial roughness changes mass transfer rate by providing vertical mixing, creating secondary currents and increasing the Reynolds number. This photo-reactor has a number of advantages that include eliminating the need for catalyst separation units as the catalyst is immobilized, creating the flow mixing by non-mechanical method, increasing the transport of oxygen from the gas phase to the photocatalyst surface by providing the flow cascade pattern. The photo-reactor was used in order to remove Reactive Yellow 81 (RY81) dye from textile industry effluent, by means of UV-ZnO process. RY81 is a reactive dye composed of 10 Benzene rings and two –N=N azo bonds. The effect of different operational parameters such as initial Concentration of dye, pH, Catalyst surface loading and flow rate in removal efficiency was investigated, and the optimal value of those parameters were 50 mg/L, 8, 40 gr/m2 and 80 cc/s, respectively. A rate equation for the removal of RY81 was obtained by mathematical kinetic modeling. The Langmuir-Hinshelwood kinetic model is one of the most common kinetic models that are used for studying the kinetics of heterogeneous photo-catalysis. The results of reaction kinetic modeling indicate the conformity of removal kinetics with Langmuir-Hinshelwood model, and the constants kL-H and Kads were obtained 7.17 mg L-1 hr-1, 0.122 mg-1 L, respectively.
One way of inserting various operational parameters to a rate equation is regression analysis. Therefore, in this study, nonlinear regression model was developed for prediction pseudo- first order rate constant as a function of initial concentration of dye, pH, catalyst surface loading and flow rate. This equation could properly predict (R2=0.95) the removal rate constant of RY81 removal in the photocatalytic cascade disk reactor under different operational conditions and a good consistency was observed between the calculated results and experimental findings.
کلیدواژه ها [English]
Reactive Yellow 81, Non-linear regression, Cascade photocatalytic reactor, Langmuir-Hinshelwood
مراجع

 6- مراجع

1. Qaderi F., Ayati B. & Ganjidoust H. 2015 Investigation of kinetic and intermediate products of acid orange 7 removal by hybrid ozonation/photocatalytic processes. Modares Journal of Civil Engineering, 15(2),‏ 79-89 (In persian).

2. Ghalebizade M. & Ayati B. 2016 Analysis of degradation of acid orange 7 by electro-fenton process with graphite cathode coated by carbon nanotubes. Modares Journal of Civil Engineering, 16(1), 119-128 (In persian).

3. Basturk E. & Karatas M. 2015 Decolorization of antraquinone dye reactive blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry,  299, 67-72.

4. Manenti DR., Soares PA., Módenes AN., Espinoza-Quiñones FR., Boaventura RAR., Bergamasco R. & Vilar VJP. 2015 Insights into solar photo-fenton process using iron(III)–organic ligand complexes applied to real textile wastewater treatment. Chemical Engineering Journal, 266, 203-212.

5. Ghanbari F. & Moradi M. 2015 A comparative study of electrocoagulation, electrochemical fenton, electro-fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3, 499-506.

6. Khataee A., Soltani RDC., Karimi A. & Joo SW. 2015 Sonocatalytic degradation of a textile dye over gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrasonics Sonochemistry, 23, 219-230.

7. Gupta VK., Jain R.,  Mittal A., Saleh TA., Nayak A., Agarwal S. & Sikarwar S. 2012 Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32, 12-17.

8. Braham RJ. & Harris AT. 2009 Review of major design and scale-up considerations for solar photocatalytic reactors. Industrial & Engineering Chemistry Research, 48, 8890-8905.

9. Rastegar M., Shadbad KR., Khataee A. & Pourrajab R. 2012 Optimization of photocatalytic degradation of sulphonated diazo dye CI reactive green 19 using ceramic-coated TiO2 nanoparticles. Environmental technology, 33, 995-1003.

10. Vaiano V., Sacco O., Stoller M., Chianese A., Ciambelli P. & Sannino D. 2014 Influence of the photoreactor configuration and of different light sources in the photocatalytic treatment of highly polluted wastewater. International Journal of Chemical Reactor Engineering, 12, 63-75.

11. Xiang Y. 2014 Mass transfer phenomena in rotating corrugated photocatalytic reactors. Master of Science thesis, Chemical & Biological Engineering Group,  University of Ottawa, Ottawa, Canada.

12. Son H-J., Jung C-W. & Kim S-H. 2008 Removal of Bisphenol-A using rotating photocatalytic oxidation drum reactor (RPODR). Environmental Engineering Research, 13, 197-202.

13. Delnavaz M., Ayati B., Ganjidoust H. & Sanjabi S. 2012 Kinetics study of photocatalytic process for treatment of phenolic wastewater by TiO2 nano powder immobilized on concrete surfaces. Toxicological & Environmental Chemistry, 94,1086-1098.

14. Vezzoli, M., Martens, W. N. & Bell, J. M. 2011 Investigation of phenol degradation: True reaction kinetics on fixed film titanium dioxide photocatalyst. Applied Catalysis A: General,  404(1), 155-163.

15. Corbel S., Becheikh N., Roques-Carmes T. & Zahraa O. 2014 Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chemical Engineering Research and Design, 92, 657-662.

16. Amiri H., Ayati B. & Ganjidoust H. 2016 Textile dye removal using a photocatalytic cascade disc reactor coated by ZnO nanoparticles: Effects of hydraulic parameters. Journal of Environmental Engineering, 142 (6), 04016019-1- 0401609-7.

17. De los Milagros Ballari M., Brandi R., Alfano O. & Cassano A. 2008 Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: I. Concentration profiles in the bulk. Chemical Engineering Journal, 136, 50-65.

18. Rodgher V., Moreira J., Lasa H. & Serrano B. 2014 Photocatalytic degradation of malic acid using a thin coated TiO2‐film: Insights on the mechanism of photocatalysis. AIChE Journal, 60, 3286-3299.

19. Donaldson AA. & Zhang Z. 2012 UV absorption by TiO2 films in photocatalytic reactors: Effect of fold curvature. AIChE Journal, 58, 1578-1587.

20. McCullagh C., Skillen N., Adams M., & Robertson PK. 2011 Photocatalytic reactors for environmental remediation: A review. Journal of Chemical Technology and Biotechnology, 86, 1002-1017.

21. Dionysiou DD., Khodadoust AP., Kern AM., Suidan MT., Baudin I. & Laîné J-M. 2000 Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Applied Catalysis B: Environmental, 24, 139-155.

22. Sun J., Qiao L., Sun S. & Wang G. 2008 Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials,  155, 312-319.  

23. Ho N., Gamage JD. & Zhang ZJ. 2010 Photocatalytic degradation of eriochrome black dye in a rotating corrugated drum photocatalytic reactor. International Journal of Chemical Reactor Engineering,  8 (1), 1-8.

24. Yatmaz H., Akyol A. & Bayramoglu M. 2004 Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Industrial & Engineering Chemistry Research, 43, 6035-6039.

25. Zalazar CS., Martin CA. & Cassano AE. 2005 Photocatalytic intrinsic reaction kinetics. II: Effects of oxygen concentration on the kinetics of the photocatalytic degradation of dichloroacetic acid. Chemical Engineering Science, 60, 4311-4322.

26. Behnajady MA. & Modirshahla N. 2006 Nonlinear regression analysis of kinetics of the photocatalytic decolorization of an azo dye in aqueous TiO2 slurry. Photochemical & Photobiological Sciences, 5,1078-1081

27. Turchi CS. & Ollis DF. 1990 Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122, 178-192.

28. Chan Y-C., Chen J-N. & Lu M-C. 2001 Intermediate inhibition in the heterogeneous UV-catalysis using a TiO2 suspension system. Chemosphere, 45, 29-35.

29. Al-Ekabi H. & Serpone N. 1988 Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. The Journal of Physical Chemistry, 92, 5726-5731.

30. Yetim T. & Tekin T. A 2016 Kinetic Study on Photocatalytic and Sonophotocatalytic Degradation of Textile Dyes. Periodica Polytechnica Chemical Engineering, paper 8535.

‏31. De Heredia JB., Torregrosa J., Dominguez JR. & Peres JA. 2001 Oxidation of p-hydroxybenzoic acid by uv radiation and by TiO2/UV radiation: Comparison and modelling of reaction kinetic. Journal of Hazardous Materials, 83, 255-264.

32. Reza K. M., Kurny A. S. W., & Gulshan F. 2015 Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science, 1-10.‏

33. Avasarala BK., Tirukkovalluri SR. & Bojja S. 2010 Synthesis, characterization and photocatalytic activity of alkaline earth metal doped titania. Indian J Chem, 49A, 1189-1196.

34. Giwa A., Nkeonye P. O., Bello K. A., Kolawole E. G. & Campos A. O. 2012 Solar photocatalytic degradation of reactive yellow 81 and reactive violet 1 in aqueous solution containing semiconductor oxides. International Journal of Applied, 2(4), 90-105.

35. Rao NN., Chaturvedi V. & Li Puma G. 2012 Novel pebble bed photocatalytic reactor for solar treatment of textile wastewater. Chemical Engineering Journal, 184, 90-97.

36. Yu H., Zhang K. & Rossi C. 2007 Theoretical study on photocatalytic oxidation of VOCs using nano- TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 188, 65-73.

37. Adishkumar S., Kanmani S., Rajesh Banu J. & Tae Yeom I. 2016 Evaluation of bench-scale solar photocatalytic reactors for degradation of phenolic wastewaters. Desalination and Water Treatment,  57(36), 16862-16870.‏

38. Pudukudy M. & Yaakob Z. 2015 Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. Journal of Cluster Science, 26, 1187-1201.

39. Zamankhan Malayeri H., Ayati B. & Ganjidoust H. 2014 Photocatalytic phenol degradation by immobilized nano ZnO. Water Environment Research, 86, 771-778.

40. Nawi M. A. & Sabar S. 2012 Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system. Journal of colloid and interface science,  372(1), 80-87.‏

41. Çelekli A., Yavuzatmaca M. & Bozkurt H. 2013 Binary adsorption of Reactive Red 120 and Yellow 81 on Spirogyra majuscule. Middle East J Sci Res, 13, 740-748.‏

42. Vidya C., Shilpa Hiremath., Chandraprabha M N., M A Lourdu Antonyraj., Indu Venu Sabaraya., Aayushi Jain. & Kokil Bansal. 2104 Photo-Catalytic Degradation Reactive Yellow 81 using Bio-Synthesized Zinc Oxide Nanoparticles. International Review of Applied Biotechnology and Biochemistry, 2(1), 159-168.

آمار
تعداد مشاهده مقاله: 552
تعداد دریافت فایل اصل مقاله: 404
صفحه اصلی | واژه نامه اختصاصی | اخبار و اعلانات | اهداف و چشم انداز | نقشه سایت
ابتدای صفحه ابتدای صفحه

Journal Management System. Designed by sinaweb.